Electricity Answers

Current, Potential Difference, Resistor Networks, Resistance and Resistivity

1. Resistance calculations
Evidence of 20Ω for one arm (1)
$\frac{1}{R}=\frac{1}{20}+\frac{1}{20}$ (1)
$R=10 \Omega(\mathbf{1}) 3$
Comment
This combination used instead of a single 10Ω resistor [or same value as before] (1)
because a smaller current flows through each resistor/reduce heating in any one resistor/average out errors in individual resistors (1)

2. Statement 1

Statement is false (1)
Wires in series have same current (1)
Use of $I=n A e v$ with n and e constant (1) 3
[The latter two marks are independent]
Statement 2
Statement is true (1)
Resistors in parallel have same p.d. (1)
Use of Power $=V^{2} / R$ leading to $R \uparrow$, power \downarrow (1) 3
OR as $R \uparrow, I \downarrow$ leading to a lower value of $V I \quad 3^{\text {rd }}$ mark consequent on second
3. Charge calculation
$Q=20000 \times 4.0 \times 10^{-4} \mathrm{~s}$ [substitution]
$Q=8.0 \mathrm{C} / \mathrm{A} \mathrm{s}$
Resistance calculation
$\mathrm{R}=\frac{\rho l}{A}$
$=\frac{\left(1.7 \times 10^{-8} \Omega\right)(50 \mathrm{~m})}{\left(1.0 \times 10^{-3} \mathrm{~m}^{2}\right)}$
$R=8.5 \times 10-4 \Omega$
Formula
(1)

Correct substitution (1)
Answer (1)
3
Potential difference calculation
$V=I R$
$=(20000 \mathrm{~A}) \times\left(85 \times 10^{-5} \Omega\right)$ [or their value] (1)
$=17 \mathrm{~V}$ [Allow full e.c.f] (1) 2

Explanation
For the tree: R or p is larger (1) 1
4. Diagram

Labelled wire and a supply (1)
Ammeter in series and voltmeter in parallel (1)
OR
Labelled wire with no supply (1)
Ohmmeter across wire (1) 2
Readings
Current and potential difference OR resistance (consistent with diagram) (1)
Length of wire (1)
Diameter of wire (1) 3

Use of readings

$R=V / I$ OR $\rho=R A / l(1)$
Awareness that A is cross-sectional area (may be seen above and credited here) (1)
Repetition of calculation OR graphical method (1)

Precaution

Any two from:

- Readings of diameter at various places /different orientations
- Contact errors
- Zeroing instruments
- Wire straight when measuring length
- Wire not heating up / temperature kept constant (1) (1)

5. (a) Io and Jupiter: Time taken for electrons to reach Jupiter
$t=s / v=\left(4.2 \times 10^{8} \mathrm{~m}\right) /\left(2.9 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}\right)=14.48 \mathrm{~s}$
Correct substitution in $v=s / t$ (ignore powers of ten) (1)
Answer: 14.48 s, 14.5 s [no ue] (1)
2
(b) Estimate of number of electrons
$Q=n e=I t$
$n=I t / e$
$n=\left(3.0 \times 10^{6} \mathrm{~A}\right)(1 \mathrm{~s}) /\left(1.6 \times 10^{-19} \mathrm{C}\right)$
Use of $n e=I t(\mathbf{1})$
$(1.8-2.0) \times 10^{25} \mathbf{(1)}$ 2
(c) Current direction

From Jupiter (to Io) / to Io / to the moon (1) 1
6. Charge

Charge is the current \times time (1) 1
Potential difference
Work done per unit charge [flowing] (1) 1
Energy
$9 \mathrm{~V} \times 20 \mathrm{C}(\mathbf{1})$
$=180 \mathrm{~J}(\mathbf{1})$
2
7. (a) p.d. across 4Ω resistor
$1.5(\mathrm{~A}) \times 4(\Omega)$
$=6 \mathrm{~V}(\mathbf{1})$
(b) Resistance R_{2}

Current through $\mathrm{R}_{2}=0.5 \mathrm{~A}(\mathbf{1})$
$\mathrm{R}_{2}=\frac{6(\mathrm{~V})}{0.5(\mathrm{~A})}$
$\mathrm{R}_{2}=12 \Omega(\mathbf{1})$
[allow ecf their pd across 4Ω]
(c) Resistance R_{1}
p.d. across $\mathrm{R}_{1}=12-6-4$
$=2 \mathrm{~V}(\mathbf{1})$
Current through $\mathrm{R}_{1}=2 \mathrm{~A}(\mathbf{1})$
$\mathrm{R}_{1}=\frac{2(\mathrm{~V})}{2(\mathrm{~A})}=1 \Omega(\mathbf{1})$
[allow ecf of pd from (a) if less than 12 V]
Alternative method
Parallel combination $=3 \Omega(\mathbf{1})$
Circuit resistance $=12(\mathrm{~V}) / 2(\mathrm{~A})=6 \Omega(\mathbf{1})$
$\mathrm{R}_{1}=6-(3+2)=1 \Omega(\mathbf{1})$ 3
[allow ecf of pd from (a) and R from (b)]
8. Definition of symbols:

$n=\quad$	number of electrons/carriers per unit volume (per m${ }^{3}$)
	OR electron (or carrier) density (1)

$v \quad=\quad$ average (OR drift) velocity (OR speed) (1)

Ratio	Value	Explanation
$\frac{n_{y}}{n_{x}}$	1	Same material (1) (1)
$\frac{l_{y}}{l_{x}}$	1	Connected in series/Kirchoff's 1 charge/current is the same (1) (1)
$\frac{v_{y}}{v_{x}}$	2	A is halved so v double [Accept qualitative, e.g. $A \downarrow$ so $v \uparrow$, or good analogy] (1) (1)

6
[Accept e.g. $n y=n x . . .$. .]
[No e.c.f]
[NB Mark value first, without looking at explanation. If value correct, mark explanation. If value wrong, don't mark explanation except: if $v_{y} / v_{x}=1 / 2$ or $1: 2$, see if explanation is correct physics, and if so give (1). No e.c.f.]
9. Metal wire:
straight line through origin
Semiconductor diode:
line along V axis for negative I
curve up in first quadrant
\square in gap
p.d. across it (4.5-1.9) V
$\therefore R_{S}=\frac{2.6 \mathrm{~V}}{20 \times 10^{-3} \mathrm{~A}}=130 \Omega$
10. Resistance of strain gauge

State $R=\frac{\rho l}{A}$
Use of formula (1)
x 6 (1)
$R=0.13 \Omega$ [ecf their $l]$ (1)

$$
\left(\begin{array}{l}
R=\frac{\rho l}{A}=\frac{9.9 \times 10^{-8} \Omega \mathrm{~m} \times 2.4 \times 10^{-2} \mathrm{~m} \times 6}{1.1 \times 10^{-7} \mathrm{~m}^{2}} \\
=129.6 \times 10^{-3} \Omega \\
R=0.13 \Omega
\end{array}\right)
$$

Change in resistance
$\Delta R=0.13 \Omega \times 0.001$
$\Delta R=1.3 \times 10^{-4}(\Omega)$ [no e.c.f.]
OR
$\Delta R=0.02 \times 0.001$
$\Delta R=2.0 \times 10^{-5} \Omega$
$0.1 \% \rightarrow 0.001$ (1)
Correct number for $\Delta R(\mathbf{1})$
Drift velocity
Stretching causes R to increase (1)
Any two from:

- Current will decrease
- $I=n A \cup Q$
- Drift velocity v decreases
- nAe constant (1) (1) 3
[For R decreasing, max 1:
Any one from:
- I will increase
- $I=n A \nu Q$
- v will increase
- nAe constant]

11. Definition of e.m.f. of a cell

Work/energy (conversion) per unit charge 1
for the whole circuit /refer to total (energy) 1
OR
Work/energy per unit charge 1
converted from chemical to electrical (energy) 1

OR
$E=\frac{W}{Q}$ for whole circuit
All symbols defined
OR
$E=\frac{P}{I}$ for whole circuit
All symbols defined 1
[Terminal p.d. when no current drawn scores 1 mark only]

Circuit diagram

$\begin{array}{llll}\mathrm{R} & 1 & \mathrm{R} \text { (can be variable) } & 1\end{array}$
A in series 1
A and V correct 1
V as shown
Or across R + A
Or across battery
[2 ${ }^{\text {nd }}$ mark is consequent on R (fixed, variable) or lamp]
Sketch graph

Graph correctly drawn with axes appropriately labelled and consistent with circuit drawn

Intercept on R axes Gradient $\equiv(-) r$ [Gradient mark consequent
$\equiv(-) r$ on graph mark]
[Gradient may be indicated on graph]
12. (a) (i) Potential difference $=$ work (done)/(unit) charge OR Potential difference $=$ Power/current (1)
(ii) $\mathrm{J}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}-{ }^{2}$ (1)
$\mathrm{C}=\mathrm{A}$ s or $\mathrm{W}=\mathrm{J} \mathrm{s}^{1}(\mathbf{1})$ $\mathrm{V}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~A}^{-1} \mathrm{~s}^{-3}(\mathbf{1})$
(b) Converts 2 minutes to 120 seconds (1)

$$
\begin{aligned}
& \text { Multiplication of VI } \Delta \mathrm{t} \text { or } \mathrm{V} \Delta \mathrm{Q} \mathbf{(1)} \\
& \text { Energy }=1440 \mathrm{~J} \mathbf{(1)} \\
& \text { Example of answer: } \\
& \begin{aligned}
\text { Energy } & =6.0 \mathrm{~V} \times 2.0 \mathrm{~A} \times 120 \mathrm{~s} \\
& =1440 \mathrm{~J}
\end{aligned}
\end{aligned}
$$

13. Current in heating element
$p=V I$

$$
\left\{\begin{array}{l}
p=\frac{V^{2}}{R} \\
R=\frac{230^{2}}{500} / 105.8(\Omega) \\
I=2.2 \mathrm{~A}
\end{array}\right.
$$

Drift velocity
Drift velocity greater in the thinner wire / toaster filament
Explanation
Quality of written communication 1
See $I=n A Q v \quad 1$
I is the same (at all points) $\quad 1$
(probably) n (and Q) is the same in both wires $\quad 1$
14. Current:

Conversion, i.e. $0.94 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}$
Use of $1.6 \times 10^{-19} \mathrm{C}$
Answer 3.0 A
$1.0 \times 10^{29} \mathrm{~m}^{-3} \times 0.20 \times 10^{-6} \mathrm{~m}^{2} \times 1.6 \times 10^{-19} \mathrm{C} \times 0.94 \times 10^{-3} \mathrm{~mm} \mathrm{~s}^{-1}$
Current $=3.0 \mathrm{~A} \quad$ [Accept 2.8 A if 0.9×10^{-3} used.]
Resistance:
Recall $R=\frac{\rho l}{A}$
(1)

Substitution:
$R=\frac{1.7 \times 10^{-8} \Omega \mathrm{~m} \times 4.0 \mathrm{~m}}{0.20 \times 10^{-6} \mathrm{~m}^{2}}$
Resistance $=0.34 \Omega \quad$ (1)
Potential difference:
Potential difference $=3.0 \mathrm{~A} \times 0.34 \Omega$
(1)
$=1.0 \mathrm{~V}(1.02 \mathrm{~V})$
[Mark for correct substitution of their values or for the answer of 1.0 V]

Explanation:

(Increasing resistivity) increases resistance (1)
Leads to a smaller current (1)
Comparison:
Drift velocity decreases (in second wire) (1) 1
[Allow $V_{1} / V_{2}=I_{1} / I_{2}$]
[Allow e.c.f. answer consistent with their current answer]
[Resistivity up, current down

$$
\left.\rho \text { up, } I \text { down / } 2\left(2^{\text {nd }} \text { mark }\right)\right]
$$

15. Calculation of voltages:

Any use of		
Voltage	$=$	current x component resistance (1)
Ballast	$=$	$150 \mathrm{~V}(\mathbf{1})$
Filament	$=$	$25 \mathrm{~V}(\mathbf{1})$

Voltages on diagram:
3 voltages (150,25,25) marked on diagram near component; ignore units (1)
[Minimum $150 \div(1 \times 25)$]
$V_{\text {starter }}=30 \mathrm{~V}$ (marked on diagram) (1)
Fundamental change necessary:
(Free) charge carriers or free electrons, ionised, particles need to be charged (1) (1)
[NOT T \uparrow]
Calculation of power dissipated:

$$
\begin{aligned}
V_{\text {ballast }} & =230 \mathrm{~V}-110 \mathrm{~V}(\mathbf{1}) \\
I & =120 \mathrm{~V} / 300 \Omega \\
& =0.40 \mathrm{~A}(\mathbf{1}) \\
\text { Power } & =230 \mathrm{~V} \times 0.40 \mathrm{~A} \text { [e.c.f for current] } \\
& =92 \mathrm{~W} \mathbf{(1)}
\end{aligned}
$$

Faulty component:
Starter is not breaking the circuit/starter still conducting (1) 1
16.

Word Equation	Quantity Defined
Voltage \div Current	Resistance
Voltage \times Current	Power
Charge \div Time	Current
Work done \div Charge	Voltage/p.d./e.m.f

(1)
(1)
(1)
(1)
17. Demonstration that resistance is 0.085Ω :

$$
\begin{aligned}
R \quad & =\rho / / A(\mathbf{1}) \\
& =1.7 \times 10^{-8} \Omega \mathrm{~m} \times 20 \mathrm{~m} /\left(4.0 \times 10^{-6} \mathrm{~m}^{2}\right) \mathbf{(1)}
\end{aligned}
$$

Calculation of voltage drop:

$$
\begin{aligned}
\mathrm{V} \quad & =37 \mathrm{~A} \times 0.085 \Omega \mathbf{(1)} \\
& =3.1 \mathrm{~V} \times 2=6.3 \mathrm{~V}\left[\text { Not if } V_{\text {shower }} \text { then found }\right](\mathbf{1})
\end{aligned}
$$

[Only one conductor, leading to 3.1 V , gets $1^{\text {st }}$ mark]
[Nothing if wires in parallel]
Explanation:
Lower resistance $/ R=0.057 \Omega /$ less voltage drop/new $V=\frac{2}{3}$ old $V(\mathbf{1})$
Power dissipated in cable/energy wasted/wire not so hot
OR more p.d/current/power to shower
OR system more efficient (1)
18. Proof:

$$
\begin{array}{lll}
V=V_{1}+V_{2} & & V=V_{1}+V_{2} \\
V=I R & V_{1}=I R_{1} \quad V_{2}= & \div I \\
I R_{2} & &
\end{array}
$$

Substitute and cancel I
Sub using $R=$

Explanation of why it is a good approximation:
Resistance of connecting lead is (very) small
So $I \times R_{\text {(very) small }}=$ (very) small p.d. $/ e^{-1}$ s do little work so p.d. small/ $/ r$ small
compared with rest of the circuit so p.d. small

Circumstances where approximation might break down:
If current is large $\mathbf{O R}$ resistance of rest of circuit is small
[Not high voltage/long lead/thin lead/high resistivity lead/hot lead]

Calculation:
Use of $R=\frac{\rho l}{A}$ with A attempted \times sectional area
(1)

Correct use of 16
(1)

Use of $V=I R$
(1)
0.036 V
19. Number of carriers or electrons per unit volume / per m^{3} /carrier density/electron density (1) [Not charge density / concentration]
Drift velocity OR drift speed OR average/mean/net/overall velocity (1)
[Not just velocity; not speed unless drift]
m^{-3} (1)
m^{2} As m s ${ }^{-1}$ (1)
Multiply and reduce to A (1)
[Base units not needed]
[Mixed units and symbols could get the third mark]
[mA = m^{-1} loses 1 mark]
Metal:

M: n large so there is a current	$\mathrm{n}: n$ in metal much larger (1)
Insulator	
I: n zero (negligible)/very small so less current (or zero current)	Current in metal is larger (1)

[Ignore anything about v. Allow e.g. electron density for n]
20. No, because V is not proportional to I OR not straight line through origin / (1) only conducts above $0.5 \mathrm{~V} /$ resistance changes
Use of $R=0.74$ / current from graph (1)
$=9.25 \Omega[9.0-9.5 \Omega$] [Minimum 2 significant figures] (1)

Calculation of p.d. across R 8.26]	Calculation of total resistance[109 - 115]	Ratio R : ratio V	$E=\Sigma I R$ (1)
$\div I$	- diode resistance [9]	Correct substitutions	Correct substitutions (1)
$103 \Omega[100-106](\mathbf{1)}$			

[If not vertical line, 0/2]

- Anything (gap, curve, below axis) (1)(1)
$0.7 \quad \neq 0.7$
0.7
[Otherwise $\mathbf{0} 0$]

21. Use $R=\rho l / A$ OR correct rearrangement OR plot $R \rightarrow l$ gradient $=\rho / \mathrm{A}$ (1) [Symbols or words]

With $A=t w(\mathbf{1})$
$l=R A / \rho$ [Rearrangement mark symbols or numbers] (1)
Use of $A=t w(\mathbf{1})$
[Correct physical quantities substituted but ignoring unit errors, powers of 10]
$=110 \mathrm{~m}$
[111 m] (1)
Reduce width/w of strip OR use thinner/t foil [Not reduce A; not increase $T, V, I]$ (1)
Smaller $w / t / A$ will be less accurate OR have larger error OR larger R will be more accurate (1)
[Increase w or t, could give e.c.f. to increased accuracy]
22. $I^{2} R /\left(\varepsilon I-I^{2} r\right) / \frac{(\varepsilon-I r)^{2}}{R}$ (1)
$I^{2} r /\left(\varepsilon I-I^{2} r\right) \frac{(\varepsilon-I r)^{2}}{R}(\mathbf{1})$
\&I OR $I^{2} R+I^{2} r / \varepsilon^{2} /(\mathrm{R}+\mathrm{r})(\mathbf{1})$
$\varepsilon I=I^{2} R+I^{2} r \quad$ OR (It $=I^{2} R T+I^{2} r t /$ their (iii) $=$ their (i) + their (ii) (1)
Cancel I (OR I and t) and arrange [only if energy equation is correct] (1)
Maximum current occurs when $R=0$ (1)
$I_{\text {max }}=\varepsilon / r(\mathbf{1})$
OR larger r means smaller I (1 mark)
$1 \mathrm{M} \Omega$ [Could be underlined OR circled] (1)
It gives the smallest current (1)
[If $100 \mathrm{k} \Omega$ this reason: 1 only] 2

